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ABSTRACT

This article outlines the overall strategy and summarizes a
few key innovations of the team that won the first Netflix
progress prize.

1. INTRODUCTION

In October 2006, Netflix Inc. released more than 100 million
customer generated movie ratings as part of the Netflix Prize
competition. The goal of the competition is to produce a 10
percent reduction in the root mean squared error (RMSE) of
test data, relative to the RMSE achieved by Cinematch, the
technology that currently produces movie recommendations
for Netflix customers. A prize of $1,000,000 will be awarded
to the first team to reach that goal [5]. These data and the
prize have generated unprecedented interest and advance-
ment in the field of collaborative filtering, a class of methods
that analyze past user behavior to infer relationships among
items and to inform item recommendations for users. Many
of these advances have been shared, most notably in the
Netflix Prize forum [8] and a 2007 KDD workshop [1].
Three characteristics of the Netflix data combine to pose
a large challenge for prediction. First and most obvious is
size. Netflix published a comprehensive data set including
more than 100 million movie ratings that were performed
by about 480,000 users on 17,770 movies. This places a
premium on methods that can be computed efficiently. Sec-
ond, almost 99% of the potential user-item pairs have no
rating. Consequently, machine learning methods designed
for complete data situations, or nearly so, must be modified
or abandoned. Third, the pattern of observed data is very
nonrandom; i.e., the amount of observed data varies by more
than three orders of magnitude among users or among items.
This fact complicates the challenge to detect weak signals
for users/movies with sufficient sample size while avoiding
over fitting for users/movies with very few ratings.

To further complicate matters, peoples’ taste for movies is a
very complex process. A particular user’s rating of a movie
might be affected by any of countless factors ranging from
the general—e.g., genre—to quite specific attributes such as
the actors, the setting, and the style of background music.
Simultaneously modeling such a wide spectrum of factors
adds to the challenge.

While no team had reached the 10 percent improvement
level after one year, Netflix awarded the first annual progress
prize to the KorBell team of AT&T Labs-Research, which

achieved the greatest improvement at that time, 8.43%. This
article describes some of the strategies that contributed to
that team’s success.

First, it was important to utilize a variety of models that
complement the shortcomings of each other. In particular,
this includes both nearest neighbor models (k-NN) and la-
tent factor models such as SVD /factorization or restricted
Boltzmann machines. In addition, it was important to in-
clude models that incorporated information beyond the rat-
ings themselves—e.g., what movies a particular user rated.
Second, we developed several innovations that improved ex-
isting collaborative filtering methods, notably:

e A new method for computing nearest neighbor inter-
polation weights that better accounts for interactions
among neighbors.

e A neighborhood-aware factorization method that im-
proves standard factorization models by optimizing cri-
teria more specific to the targets of specific predictions.

o Integration of information about which movies a user
rated into latent factor models for the ratings them-
selves, adapting techniques from [9; 10].

e New regularization methods across a variety of models,
including both neighborhood and latent factor models.

Section 2 discusses the need to utilize multiple, complemen-
tary models. Section 3 summarizes a few of the innovations
developed in the process.

2. UTILIZING A COMPLEMENTARY SET
OF MODELS

We found no perfect model. Instead, our best results came
from combining predictions of models that complemented
each other. While our winning entry, a linear combination
of many prediction sets, achieved an improvement over Cin-
ematch of 8.43%, the best single set of predictions reached
only 6.57%. Even that method was a hybrid based on apply-
ing neighborhood methods to results of a restricted Boltz-
mann machine. The best improvement achieved purely by
a latent factor model was 5.10% and was even less for the
best pure nearest neighbor method.

We found that it was critically important to utilize a vari-
ety of methods because the two main tools for collaborative
filtering—neighborhood models and latent factor models—
address quite different levels of structure in the data.
Neighborhood models (k-NN)—the most common form of
collaborative filtering—are most effective at detecting very



localized relationships. The item neighborhood approach
identifies pairs of items (movies) that tend to be rated simi-
larly, in order to predict ratings for an unrated item based on
ratings of similar (neighboring) items by the same user [11].
Similarly, the user approach bases predictions on ratings of
the same item by similar users [7]; however, the rest of this
article considers only the item approach. Our best neigh-
borhood models typically used 20 to 50 neighboring movies
for any single prediction, often ignoring the vast majority
of ratings by the user of interest [2]. Consequently, these
methods are unable to capture the totality of weak signals
encompassed in all of a user’s ratings.

Latent factor models comprise an alternative approach to
collaborative filtering with the more holistic goal to uncover
latent features that explain the observed ratings. For an
m X n ratings matrix R with no missing values, matrix fac-
torization via singular value decomposition (SVD) approxi-
mates R with the best rank- f approximation R, defined as
the product of two rank-f matrices Pp,x s and Qnx s, where
f is usually much smaller than either m or n. The matrix R
captures the f most prominent features of the data, leaving
out less significant patterns in the observed data that might
be mere noise. For sparse data like the Netflix ratings, alter-
native estimation methods are required in order to deal with
the missing elements and to avoid over fitting (see, e.g., [3;
4; 6; 10]). Restricted Boltzmann machines provide another
model based on estimating latent factors [10].

Latent factor models are generally effective at estimating
overall structure that relates simultaneously to most or all
movies. However, these models are poor at detecting strong
associations among a small set of closely related movies such
as The Lord of the Rings trilogy, precisely where neighbor-
hood models do best.

While, in theory, either methodology might be extended to
encompass the full spectrum of relationships, such an effort
seems doomed to failure in practice. Finding niche clusters
of items such as Hitchcock films or boxing movies might re-
quire thousands of latent factors. And even so, those factors
might be swamped by the noise associated with the thou-
sands of other movies. Similarly, for neighborhood methods
to capture the degree that a user prefers action to dialogue
may require a very large number of neighbors, to the ex-
clusion of estimating the user’s interest in other relevant
features.

We also found it extremely value to utilize models that in-
corporate information beyond simply the ratings themselves.
This was important for better modeling the users, as most
users in the test set provided a meager number of ratings.
In pursuing this approach, we analyzed which movies users
rate, regardless of how they rated these movies. Hence, we
try modeling for which movie a user will choose to voice
his/her opinion and vote a (positive or negative) rating.
This provided an important tool for learning about users,
generating a unique perspective that nicely complemented
the ratings-based information. We call this “the binary view
of the data”. Overall, this was a key to our progress, and will
probably serve an even bigger role in real life recommender
systems, where richer and comprehensive implicit user be-
havior (e.g., rental history, browsing history and search pat-
terns) is available to enrich models centered around explicit
ratings.

Finally, some of our models utilized other information about
items, users, or individual ratings such as the number of rat-

ings of an item or by a user, the average rating of an item or
by a user, and the date of the rating (see section on “Global
Effects” in [2] for details). Variables like these allowed us, for
example, to distinguish users who like the most commonly
rated movies best from those who prefer more specialized
fare, or to predict better for users whose ratings rise over
time, above and beyond any change explained by the inher-
ent quality of the items being rated.

3. IMPROVING EXISTING METHODS

Generally speaking, improved modeling tends to follow one
of three directions, or a combination thereof:

1. Deepening known methods in order to improve their
quality

2. Combining multi-scale views of the data

3. Combining explicit rating information with implicit
rating behavior (the binary view)

Accordingly, we will demonstrate our improvements on two
well known models.

3.1 Weights for Neighborhood Models

Our goal is to predict an unobserved rating by user u for
item (movie) %, denoted as r,;. An item-oriented neighbor-
hood model identifies a set of neighboring items N(i; u) that
other users tend to rate similarly to their rating of ¢. All
items in N(4;u) must have been rated by u. The predicted
value of r; is taken as a weighted average of the ratings of
neighboring items:
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The item similarities—denoted by s;;—play a central role
here, as they are used both for selecting the neighbors and
for weighting the above average. Common choices are the
Pearson correlation coefficient and the closely related cosine
similarity. We use by; to denote some baseline predictor for
rui.- It is important to use these baseline values to remove
item- and user-specific biases that may prevent the model
from revealing the more fundamental relationships. Prior
methods often take b,; as the mean rating of user u or item
i. In [2; 3] we offered a more comprehensive approach to
these baseline estimates.

Neighborhood-based methods became very popular because
they are intuitive and relatively simple to implement. In
particular, they do not require tuning many parameters or
an extensive training stage. They also provide a concise and
intuitive justification for the computed predictions. How-
ever, standard neighborhood-based methods raise some con-
cerns:

1. The similarity function s;;, which directly defines the
interpolation weights, is arbitrary. Various algorithms
use somewhat different similarity measures, trying to
quantify the elusive notion of item similarity. Suppose
that a particular item is predicted perfectly by a sub-
set of the neighbors. In that case, we would want the
predictive subset to receive all the weight, but that is
impossible for bounded similarity scores like the Pear-
son correlation coefficient.



2. Previous neighborhood-based methods do not account
for interactions among neighbors. Each similarity be-
tween an item ¢ and a neighbor j € N(7; u) is computed
independently of the content of N(4;u) and the other
similarities: s;, for k& € N(4;u) — {j}. For example,
suppose that our items are movies, and the neighbors
set contains three movies that are highly correlated
with each other (e.g., sequels such as “Lord of the
Rings 1-3”). An algorithm that ignores the similarity
of the three movies when determining their interpo-
lation weights, may end up essentially triple counting
the information provided by the group.

3. By definition, the interpolation weights sum to one,
which may cause overfitting. Suppose that an item has
no useful neighbors rated by a particular user. In that
case, it would be best to ignore the neighborhood in-
formation, staying with the current baseline estimate.
Nevertheless, the standard neighborhood formula uses
a weighted average of ratings for the uninformative
neighbors.

4. Neighborhood methods may not work well if variability
differs substantially among neighbors.

We propose a method that overcomes these difficulties. First,
we replace the weighted average by a more general weighted
sum, which allows downplaying neighborhood information
when lacking informative neighbors. Given a set of neigh-
bors N(¢; u) we need to compute interpolation weights {wi;|j
€ N(¢;u)} that will enable the best prediction rule of the
form:
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We learn interpolation weights by modeling the relationships
between item ¢ and its neighbors through a least squares
problem:
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The major challenge is to cope with the missing values, and
this can be done efficiently by estimating all inner products
between movie ratings. For a full description refer to [3].
Importantly, this scheme provides interpolation weights that
are derived directly from the ratings residuals (ry; — byj),
not based on any similarity measure. Moreover, derivation
of the interpolation weights explicitly accounts for relation-
ships among the neighbors.

Our experiments showed that this scheme significantly im-
proved accuracy relative to that based on more standard
interpolation weights (e.g., driving RMSE from around 0.94
to around 0.92 for Netflix’s probe data) without a meaning-
ful increase of running time [3].

So far, we demonstrated the benefits of building a deeper,
fundamental model for k-NN. Additional accuracy gains are
possible by combining the local scale view of k-NN with the
higher scale view of latent factor model. Accordingly, we
can take the baseline estimates (the b,;’s) as the predictions
made by a latent factors model, what amounts to activat-
ing k-NN on the residuals of factorization. This enabled
us to achieve RMSE of 0.898 for the test data, benefiting
from the multi-scale view of the data. Further improve-
ment is achieved by integrating also the “binary viewpoint”.

One way to achieve this is by utilizing conditional restricted
Boltzmann machines (RBM) [10]. The RBM model achieves
a similar accuracy to standard factorization model, while
relying also on the binary viewpoint. When applying k-
NN on residuals of RBM, thereby integrating all important
viewpoints of the data (local, high scale and binary), RMSE
dropped to 0.889.

3.2 Latent Factor Models

Latent factor models measure the agreement of users and
movies across a series of features that are algorithmically
learned from the data. This way, we associate each user u
with a user-factors vector p, € RY, and each movie with a
movie-factors vector ¢; € Rf. The prediction is done by tak-
ing an inner product — #,; = pLq;. The more involved part
is the estimation of the factors. A straightforward approach
would minimize the regularized cost function:
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The set K contains all (u,%)-pairs for which ry; is known.
The regularization parameter A prevents overfitting; a typ-
ical value is A = 0.05. We minimized (4) by an alternating
least squares scheme (Sec. 5.1 of [3]). Others [6; 10] used
gradient based techniques. When using 60 factors (f = 60),
this basic factor model predicts the test set with RMSE
0.908.

Interestingly, this basic factorization model can benefit from
moving along each of the three possible directions outlined
in the beginning of the section. First, we can improve ac-
curacy by deepening the foundation of the model. The
squared penalty used in (4) implicitly assumes that all fac-
tors are drawn from independent normal distributions with
zero mean and the same variance. This is a quite limiting
assumption. A richer model assumes a general multivariate
normal distribution for the factors. Accordingly, the ratings
can be modeled by the following. First, we draw user and
movie factors from the joint normal distribution:
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Then, each rating 7,; is taken from the normal distribution:
Tui = N(pgqi, €)

The priors given in (5) avoid overfitting by shrinking the
factors towards baseline values when not enough ratings are
available. Removing the parameter restrictions implied by
(4) produces significant accuracy gains. For a 60 factors
example, the RMSE on the test data fell to 0.899.
Naturally the added expressive power of a richer Gaussian
prior comes with an added complexity of the optimization
algorithms. We employed two techniques. One is based
on Gibbs sampling, and the other is based on expectation
maximization, where we alternate between fixing the factors
and fixing the parameters; see [12] for a related technique.
Alternatively, we can stay within the convenient simple for-
mulation (4) and significantly improve prediction accuracy
by integrating either the localized viewpoint or the binary
viewpoint into the model. Integrating the local viewpoint
gives us a more complete multi-scale view of the data. To
this end we use adaptive user factors that model the behav-
ior of a user within the neighborhood of the given movie; see
[4]. Technically, we allow user factors to change according to



the item that is being predicted. Therefore, when predict-
ing r,; we first compute a vector p, (i) € Rf — depending on
both u and i — and then predict 4 as (pu(i))” ¢;. The com-
putation of p,(7) is done by tilting the squared error (4) to
overweight those movies similar to i, obtaining the problem:

min sij (Tuj —pu())41)* + Mlpu (9| (6)

P ;R
Here, N(u) is the set of movies rated by user u. The con-
stant s;; is a similarity measure between movies ¢ and j. By
integrating the local viewpoint, prediction accuracy is sig-
nificantly improved. For the 60 factors case, the error drops
to RMSE=0.897.
Instead of integrating the local viewpoint, we can integrate
the binary viewpoint. Here we adopt a principle from Pa-
terek’s NSVD method [9]. The NSVD model refrains from
explicitly parameterizing each user, but rather models each
user based on the movies that he/she rated. This way,
each movie i is associated with two movie-factors vectors
¢; and z;. The representation of a user u is through the

weighted sum: (EjeN(u) a:j) /V/|IN(w)|, so ry; is predicted

as: gf (ZjEN(u) a:j> /4/IN(w)|. Importantly, NSVD models

user behavior purely based on the binary viewpoint. This
allows a straightforward integration of the binary viewpoint
into the basic factorization model. A rating is modeled by
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The parameters are estimated by gradient descent minimiz-
ing of the associated regularized squared error. The model
used with 60 factors predicts the test set with RMSE lower
than 0.897.

To summarize, the accuracy of the latent factors model can
be improved by following three distinct directions. First,
one can deepen the foundations of the model, by assuming
a more flexible and realistic probabilistic model. Alterna-
tively, one can retain the simple structure of the original
model, but gain even more accuracy by introducing com-
plementing perspectives of the data into the model, being
either the local view or the binary view.

3.3 Regularization

Regularization plays a central role in all of our methods.
All the models described above include massive numbers of
parameters, many of which must be estimated based on a
small number of ratings (or pairs of ratings). Consequently,
it is critically important to avoid over fitting the training
data. We use shrinkage to improve the accuracy of similar-
ity scores used for nearest neighbor selection [4]. Shrinkage
of estimated inner products is essential to successful estima-
tion of interpolation weights for the nearest neighbor model
described above [2]. Our factorization models typically use
ridge regression for regularization. Removal of global effects
used empirical Bayes shrinkage [2].

4. DISCUSSION

Our experience with the Netflix competition showed that
the most successful model is an ensemble of multiple pre-
dictors; each of them specializes in addressing a different
aspect of the data. In particular, most improvement stems

from moving models along three different axes. The first
(and most obvious) axis denotes improving the quality of
the models by basing them on deeper foundations. The
second axis spans a multi-scale modeling of the data that
integrates the localized perspectives expressed within lim-
ited neighborhoods with the more regional view expressed
by latent factors models. The third axis introduces the “bi-
nary view” of user behavior that models which movies the
users are likely to rate regardless of the value of the rating.
This binary view can be explored by working with a com-
patible binary representation of the data or, alternatively,
by employing models that allow expressing binary aspects
within the context of ratings data. These models include
conditional restricted Boltzmann machines'[10], NSVD [9],
and some related specialized models.

Although the winning Netflix entry combined many sets of
predictions, we note that it is possible to achieve a 7.58%
improvement with a linear combination of three prediction
sets that combine all the key elements discussed in this ar-
ticle: k-NN models, removal of global effects, neighborhood
aware factorization, and latent factor models with the bi-
nary viewpoint.

Real life recommender systems are exposed to two types of
user feedback. One is the high quality explicit rating, where
users clearly express their opinion on a product. However,
this kind of explicit feedback may be difficult to collect due
to system constraints and reluctance of users to cooperate.
A second source of information is the abundant implicit
feedback, which may be purchase/rental history, browsing
patterns, search keywords, etc. Typically, a recommender
system capitalizes on only one of these two sources of in-
formation. We believe that the “binary view” serves as a
proxy for general implicit feedback, suggesting that a com-
bined system utilizing both explicit and implicit input is
most desirable. While the Netflix data allowed us to use
only the “who rated what” information, a real life system
can exploit the much broader “who rented what” informa-
tion, together with all other sorts of implicit feedback. This
implies that our very positive experience of integrating the
implicit binary view into our models can be leveraged by
real life systems that access wide ranging implicit feedback.
The most challenging part of the Netflix data proved to be
the many users who provided very few ratings. It is very
likely that many of those users do have a rich rental history,
which could allow a combined recommender system to make
accurate, personalized recommendations for them, or even
for customers who provided no ratings at all.
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